
MF#K - Introduction to F#
meeting @ GroupM 2015-07-08

Mødegruppe for Ƒunktionelle Københavnere
(MF#K)

Overview

Å About me

Å Matching of expectations

Å Agenda

ï 15:30 |> Short introduction to F# (sales pitch)

ï 15:50 |> Demo: Producer/Consumers/Reducer with F# Agents

ï 16:30 |> Summary: U want more?

About me (very shortly)

Å Ramón Soto Mathiesen

Å MSc. Computer Science from DIKU (Minors in Mathematics)

Å Managing Specialist |> CTO of CRM Department @ Delegate A/S

ï ER-modeling, WSDL, OData (REST API)

Å F# / C# / JavaScript / C++: Delegate A/S @ GitHub

Å Blog: http:// blog.stermon.com/

http://www.delegate.dk/
http://delegateas.github.io/
http://blog.stermon.com/

Matching of expectations

Å What are you expectations for this introduction to F#?

Matching of expectations

Å Ƒunctional Copenhageners Meetup Group willtry to get more
and more software projects to be based on functional
programming languages. We mainly focus on F# and Haskell,
but other functional programming languages ​​like Scala, Lisp,
Erlang, Clojure, OCaml, etc. are more than welcome.

Å We expect that attendees to this introduction to F#, will get
inspired to use the language in the future J

Å In order to get you hooked, we always try to inspire you with
some code you can relate to and that’s why ask in advance for
some task or paradigm you might find interesting.

Short introduction to F# (sales pitch) - Buzzwords

Å less code, error-free projects, only one code base, big data,
parallelism, concurrency, asynchronous processes

Short introduction to F# (sales pitch) - F# - What is it?

Å Is an open-source, strongly typed, multi-paradigm
programming language encompassing functional, imperative
and object-orienteddesigned by Don Syme (MS Research
Cambridge UK) and maintained by Microsoft, F# Software
Foundation and open contributors

Å It’s a mature language that is part of Visual Studio and the .NET
Framework

Å Loved by the very talentedwho contribute to it for free with
sometimes very usable projects:

ï Special mention to (among others):

ÅTomas Petricek (TomASP.NET)

ÅScott Wlaschin (F# for fun and profit)

http://tomasp.net/
http://fsharpforfunandprofit.com/

Short introduction to F# (sales pitch) - F# - Why use it?

Å Conciseness

Å Convenience

Å Correctness

Å Concurrency

Å Completeness

Short introduction to F# (sales pitch) - F# - Why use it?

Å Conciseness:

ï F# is not cluttered up with coding noise such as curly brackets,
semicolons and so on

ï You almost never have to specify the type of an object, thanks to a
powerful type inference system.

ï And, compared with C#, it generally takes fewer lines of codeto solve
the same problem

let swap (x,y) = y,x
let foo = swap(42, 0)
let bar = swap("42" , "0")

> val swap : x:'a * y:'b - > 'b * 'a
> val foo : int * int = (0, 42)
> val bar : string * string = ("0", "42")

Short introduction to F# (sales pitch) - F# - Why use it?

Å Convenience:

ï Many common programming tasks are much simpler in F#. This
includes things like creating and using complex type definitions,
doing list processing, comparison and equality, state machines, and
much more

ï And because functions are first class objects, it is very easy to create
powerful and reusable code by creating functions that have other
functions as parameters, or that combine existing functions to
create new functionality

let f g x = g x
f (fun x - > x * x) 42

> val f : g:('a - > 'b) - > x:'a - > 'b
> val it : int= 1764

Short introduction to F# (sales pitch) - F# - Why use it?

Å Correctness:

ï F# has a powerful type system which prevents many common errors
such as null reference exceptions.

ï Values are immutable by default, which prevents a large class of
errors

ï In addition, you can often encode business logic using the type
systemitself in such a way that it is actually impossible to write
incorrect codeor mix up units of measure, greatly reducing the need
for unit tests

[<Measure>] type DKK
[<Measure>] type USD
let rate : float <USD/ DKK> = 0.2 <USD/ DKK>
let usd2dkk (amount : float <USD>) = amount / rate
type OpportunityDK = { Customer : string; Amount : float <DKK> }
type OpportunityUS = { Customer : string; Amount : float <USD> }
type Opportunities = | DK of OpportunityDK | US of OpportunityUS
let odk0 = { OpportunityDK . Customer = "Skillshouse A/S" ; Amount = 42. <DKK> }
let odk1 = { OpportunityDK . Customer = "Microsoft Danmark ApS"; Amount = 42. <DKK> }
let ous2 = { OpportunityUS . Customer = "Microsoft RedmondHQ"; Amount = 42. <USD> }
[DK(odk0); DK(odk1); US(ous2);]
|> List . map(fun x - > match x with | DK y - > y. Amount | US y - > usd2dkk y. Amount)
|> List . reduce(+)

Short introduction to F# (sales pitch) - F# - Why use it?

Å Concurrency:

ï F# has a number of built-in libraries to help when more than one
thing at a time is happening. Asynchronous programming is very
easy, as is parallelism. F# also has a built-in actor model, and
excellent support for event handling and functional reactive
programming

ï And of course, because data structures are immutable by default,
sharing stateand avoiding locks is much easier

[| 0 .. 10 .. (1 <<< 16)|]
|> Array . map(fun x - > x * x)
[| 0 .. 10 .. (1 <<< 16)|]
|> Array . Parallel . map(fun x - > x * x)

Short introduction to F# (sales pitch) - F# - Why use it?

Å Completeness:

ï Of course, F# is part of the .NET ecosystem, which gives you
seamless access to all the third party .NET libraries and tools.

ï Finally, it is well integrated with Visual Studio, which means you get
a great IDE with IntelliSense support, a debugger, and many plug-ins
for unit tests, source control, and other development tasks

ï Although it is a functional language at heart, F# does support other
styles which are not 100% pure, which makes it much easier to
interact with the non-pure world of web sites, databases, other
applications, and so on. In particular, F# is designed as a hybrid
functional/OO language, so it can do virtually everything that C# can
do exceptΧ

open System
let ts () = DateTime. Now. ToString("o") // ISO- 8601
let ts' () = (ts ()) . Replace(":" , String . Empty) // Filename safe
let cw (s : string) = Console . WriteLine(s)
let cew (s : string) = Console . Error . WriteLine(s)

Short introduction to F# (sales pitch) - F# - Why use it? (funny)

Remark: string in F# can be null as well (primitive .NET types)

Short introduction to F# (sales pitch) - F# - Why use it? (Business)

Å Time to Market:

ï Easy prototyping (REPL: Read-Evaluate-Print-Loop)

ï Run as .NET code

Å Efficiency:

ï JIT compilation (as C#)

ï Easy to implement parallelism

Å Complexity:

ï Flexible language

ï Type inference

Å Correctness:

ï Advanced types

ï Close to math

Demo: Producer/Consumers/Reducer with F# Agents

Å Dzumali Salmani and Lars Nymand were interested in hearing about how
F# handles “assembly line” code:

Producers (push) Ą Buffer ăConsumers (pull)

They mention that currently they are using a MS .NET BlockingCollection
as the buffer, which supports concurrent producers and consumers.

The main process would be that there arrive many log files which are sent
to different buffers depending on the tasks to be performed. On each of
the consumers of the buffers, there is used MS .NET Parallel.ForEach in
order to parallelize the process

Remark: The source collection is partitioned and the work is scheduled on
multiple threads based on the system environment. The more processors on
the system, the faster the parallel method runs. For some source collections,
a sequential loop may be faster, depending on the size of the source, and the
kind of work being performed(source: MSDN - dd460720). In other words,
Parallel.ForEach = Blocking Fork/Join with System Threads J

https://msdn.microsoft.com/en-us/library/dd460720(v=vs.110).aspx

Demo: Producer/Consumers/Reducer with F# Agents (Blocking)

Demo: Producer/Consumers/Reducer with F# Agents

Å We have chosen to solve the problem with F# Agents:

ï Alias type: type Agent<'a> = MailboxProcessor<'a> (Erlang style)

Remark: MS .NET MailboxProcessors are NOT Erlang Agents

ï Agents Ą Async ĄNon-blocking fibers (lightweight threads)

ï Task to be shown:

1. Utility functions

2. Domain functions (just a simple Agent implementation)

3. Reducer function and agent (thread-safe side effects)

4. Consumer function and agents (show unsafe side effects)

5. Buffer based on File.IO

6. Producer function and agents (show unsafe side effects)

7. Recursive main method that calls producer agents
(imagine they are produced by people accessing your systems)

Remark: All the above in about 75 lines of well-written code J

Demo: Producer/Consumers/Reducer with F# Agents (Async)

Demo: Producer/Consumers/Reducer with F# Agents (Performance)

U want more?

Å Code will be available @ dzumali.salmani@groupm.com

Å Slides will be available @ dzumali.salmani@groupm.com

Å Sign up @ MF#K for:

ï More fun

ï Hands-on:

ÅClaes Worm on OCaml(2015-07-08)

ï Talks:

Å In the pipeline talks about: Erlang, Haskell, Rust, ...

ï Up next: Elixir / Erlang (September month)

Å MF#K would like to thank our sponsor(s):

mailto:dzumali.salmani@groupm.com
mailto:dzumali.salmani@groupm.com
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/events/222967161/

