MF#K - Introduction to F#
meeting @ GroupM 2015-07-08

Madegruppefor F u n k t iIKebenhadviheee
(MF#K)

IN

Overview

A About me
A Matchingof expectations

A Agenda
I 15:30 |> Short introduction td-#(sales pitch)
I 15:50 |>Dema Producer/Consumers/Reducer with F# Agents
I 16:30 |> Summary: Want more?

About me (very shortly)

A
A
A
A
A

Ramon Sotdlathiesen
MSc Computer Science from DIKMinorsin Mathematics)

Managing Specialist |[> CTO of CRM Departmenig@@gate A/S
I ERmodeling WSDL, OData (REST API)

F# | C# [/ JavaScript A3 :DelegateA/S @ GitHub

Blog:http:// blog.stermon.com/

http://www.delegate.dk/
http://delegateas.github.io/
http://blog.stermon.com/

Matchingof expectations

A What are you expectations for this introduction to F#?

Matchingof expectations ’)E

A F u n c tJdomemhageners Meetu@roup willtry to get more
and more software projects to be based on functional
programminganguages. Wenainly focus on F# and Haskell,
but other functional program
Erlang, Clojure, OCaml, etc. are more than welcome

A We expecthat attendees to this introduction té#, will get
Inspired to use the language in the futuie

A In order to get you hooked, we always try to inspire you with
some code you c awhyaskimdvanee faro
some task or paradigm you might find interesting.

Short introduction to F# (sales pifchBuzzwords ’)E

A less code, erreiree projects, only one code base, big data,
parallelism, concurrencgsynchronous processes

Short introduction to F# (sales pifchF#- What is it?

DS

A Is anopensource strongly typed multi-paradigm

programming language encompassfagctional, imperative
andobject-oriented designed by Don Syme (MS Research
Cambridge UK) and maintained by Microsoft, F# Software
Foundation and open contributors

|l t s a mature | anguage that
Framework

Loved by thevery talentedwho contribute to it for free with
sometimes very usablerojects:
I Speciamentionto (among others):

A Tomas PetriceKITomASP.NB T
A ScottWlaschin # for fun and prof)t

http://tomasp.net/
http://fsharpforfunandprofit.com/

Short introduction to F# (sales pifchF#- Why use it? ’)E

A Conciseness
A Convenience
A Correctness
A Concurrency
A Completeness

Short introduction to F# (sales pifchF#- Why use it? })E

swap (X,y) = Yy, X

foo = swap(42, 0) > val foo:int*int=(0, 42)

> val bar : string * string = ("0", "42")

bar = swap("42","0")

A Conciseness:

I F#is not cluttered up with coding noise such as curly brackets,
semicolons and so on

I You almost never have to specify the type of an object, thanks to a
powerfultype inference system

I And, compared with C#, it generally takewer lines of coddo solve
the same problem

Short introduction to F# (sales pifchF#- Why use it?

f(X X * X) > val it: int= 1764

A Convenience:

I Manycommon programming tasks are much simpler in F#. This
Includes things like creating and usicmmplex type definitions
doinglist processingcomparison and equalitystate machinesand
much more

I And because functions are first class objects, it is very easy to create
powerful and reusable code by creating functions that hatresr
functions as parametersor thatcombine existing functionso
create new functionality

Short introduction to F# (sales pifchF#- Why use it? ’)E

[<Measure>] DKK
[<Measure>] usb
rate : float <USDDKK = <USD DKk
usd2dkk (amount: float <USD) = amount / rate
OpportunityDK = { Customer : string; Amount : float <DKkK }
OpportunityUS = { Customer : string; Amount : float <USD }
Opportunities = | DK OpportunityDK | us OpportunityUS
odk0 = { OpportunityDK . Customer = "Skillshouse A/S"; Amount = <DKK }
odkl = { OpportunityDK . Customer = "Microsoft = Danmark ApS"; Amount = <DKK }
ous2 = { OpportunityUS . Customer = "Microsoft ~RedmondHQ'; Amount = <UsD }
[DK(odk0); DK(odkl); US(ous2);]
[> List . map(X X | DKy y. Amount | USy usd2dkk y. Amount)
|> List . reduce(+)

A Correctness:

I F# has @owerful type systenwhich prevents many common errors
such aswull reference exceptions

I Values aremmutable by default which prevents a large class of
errors

I In addition, you can often encodrisiness logicising thetype
systemitself in such a way that it is actualiyipossible to write
Incorrect codeor mix upunits of measure greatlyreducing the need
for unit tests

Short introduction to F# (sales pifchF#- Why use it? })E

[(1 <<< 16)|]

|> Array . map(X X * X)

[l o. (1 <<< 16)|]

|> Array . Parallel . map(X X * X)

A Concurrency:

I F# has a number of buiih libraries to help when more than one
thing at a time is happening. Asynchronous programmingsg
easy, as is parallelism. F# also has a boilictor mode| and
excellent support for event handling afighctional reactive
programming

I And of course, becausiata structures are immutable by defauylt
sharing stateandavoiding lockdas much easier

Short introduction to F# (sales pifchF#- Why use it? ’)E

System

ts () = DateTime. Now ToString("o0") /[1SO- 8601

ts' () = (ts () .Replace(™" , String . Empty) // Filename safe
cw (s:string) = Console. WriteLine(s)

cew (s:string) = Console. Error . WriteLine(s)

A Completeness

I Ofcourse,F# is part of the .NET ecosystewhichgives you
seamlessccess to all the third party .NET libraries and taols

I Finally,t is well integrated with Visual Studiowhich means you get
a great IDE witlntelliSense supporta debugger and many plugns
for unit tests, source control, and other developmeasks

I Although it is a functional language at heart, F# does support other
styles which are not 100% pure, which makes it much easier to
Interact with the nonpure world of web sites, databases, other
applications, and so on. In particular, F# is designed as a hybrid
functional/OO languageso it can do virtually everything that C# can
do exceptX

Short introduction to F# (sales pifchF#- Why use it3funny) ’)E

What can C# do that F# can't? So far I've only found: flags
enums, extension methods on Object. #fsharp

% David Tchepak @davetchepak 21 Mar

£ © Tomas Petricek W Follow
. @tomaspetricek
> @davetchepak "What can C# do that F# cannot?"

NullReferenceException :-)
11:52 PM - 21 Mar 2013

68 RETWEETS 15 FAVORITES « 3 %

Remark: string in F# can baull as well (primitive .NET types)

Short introduction to F# (sales pifchF#- Why use i? (Business) })E

A Time to Market:
I Easy prototyping (REPL: RdadluatePrint-Loop)
I Run as .NET code
A Efficiency:
I JIT compilation (as C#)
I Easy to implement parallelism
A Complexity:
I Flexible language
I Type inference
A Correctness:
I Advanced types
I Close to math

Dema Producer/Consumers/Reducer with F# Agents })E

A DzumaliSalmani and Lafdymand were interested in hearing about how
F#+ handl e sl i“naes’s ecnobd ey:

Producers (push) Buffera Consumergpull)

They mention that currently they are usiag\S .NEBlockingCollection
as the buffer, which supports concurrent producers and consumers.

The main process would be that there arrive méy files whichare sent
to different buffersdepending on the tasks to h@erformed. On each of

the consumers of the buffershere is usedMS .NET Parallel.ForEach in
order to parallelize the process

Remark: Thesource collection is partitioned and the work is scheduled on
multiple threads based on theystem environment. Themore processors on
the system, thefaster the parallel method runs. For some source collections,
a sequential loop may be faster, depending on the size of the sauaind the
kind of work beingperformed(source:MSDN- dd460720). Inother words,
Parallel.ForEach = Blocking Fork/Join with System Thideads

https://msdn.microsoft.com/en-us/library/dd460720(v=vs.110).aspx

Dema Producer/Consumers/Reducer with Rgents (Blocking) ’)E

Producers

Dema Producer/Consumers/Reducer with F# Agents ’)E

A We have chosen to solve the problem with F# Agents:
I Alias type: typeAgent<'a> = MailboxProcessor<'éerlang style)
Remark: MS .NET MailboxProcessors are NOT Erlang Agents
I AgentsA AsyncA Non-blocking fiberslightweight threads)
I Task to be shown:

1.

N o os W

Utility functions

Domain functions (just a simple Agent implementation)
Reducer function and agent (threadfe side effects)
Consumer functiomndagents (show unsafe side effects)
Buffer based on File.lO

Producer functiorandagents(show unsafe side effedts

Recursive main method that calls producer agents
(imagine they are produced by people accessing your systems)

Remark: All the above in about 75 lines of welfitten codeJ

Dema Producer/Consumers/Reducer with Rgents (Async) ’)E

Producer Agents File.IO Buffers | Consumer Agents | Reducer Agent

Qﬁﬁync > Triggered by File.lO Event Asyn
s, s,
e % T,
2q
B Triggered by File.lO Event Async
]
S_;?’C

s, <
(\
},/?C‘ ?5\ \
Async—) Triggered by File.lO Event Asyn&bOiAsync—
v,
% %
2 2
wes (e} oo (¢} coo <
&
O
Q*Async—;{ Triggered by File.lO Event Asyn

Side effects Side effects Side effects
NOT thread-safe NOT thread-safe NOT thread-safe

Dema Producer/Consumers/Reducer with Agents (Performanc’)E

= C:\Windows\system32\cmd.exe =] Task Manager - ol El

rformance| App history | Startup | Users | Details | Services

Foprar] CPU
M s 288 GHe CPU Intel(R) Core(TM) i7-4900MQ CPU @ 2.80GHz
Memory [T T I T
| 78/31,6 GB (25%)] . . |
14T | | [
Disk 0 (C:) o | . VAT AL R
% L 1A AR I VAL MR
’ ety |
Disk 1 (D:) | !
| 2% |
Mobile
Bluetooth
_f‘Vi. Fi y I | T T
N bl
||| Ethernet | ! | |,
LV s o R sokbps \ i I M V
htd AL Iy vy LA | U
SN f Y | V
(B
|
|
Maximum spe 2,19 GHz
71% 2,88 GHz o "1
s Hand ooical processors: B
132 1509 51849 vitusizat Enabled
. : 256 k8
! 2 cach 10M8
1:00:34:00 : 80MB

(M) Fewer details @ Open Resource Monitor

U want more? ’)E
A

A Codewill be available @ zumali.salmani@aroupm.com
A Slides will be available @ umali.salmani@agroupm.com

A Sign up @VIF#Kfor:

T Morefun

I Handson:
A Claes Worm on OCai(201507-08)

T Talks:

A In the pipeline talks aboufirlang Haskel| Rust ...
I Up next Elixir/ Erlang (September month)

A MF#K would like to thank our sponsor(s):

Shared Success

mailto:dzumali.salmani@groupm.com
mailto:dzumali.salmani@groupm.com
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/
http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/events/222967161/

